The exponential function expz is defined as expz=∑k=0∞zkk!.
The absolute value and argument of the exponential function satisfy |expz|=expRezargexpz=Imz+2πk, with some k∈ℤ. It is periodic in the imaginary direction: exp(z+2πi)=expz.
For complex numbers a,b,z and integer n the following holds: exp(a+b)=(expa)(expb)(expz)n=exp(nz)exp(iz)=cosz+isinz.
Real value of exp(x+iy).